If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+3-147x=0
a = 9; b = -147; c = +3;
Δ = b2-4ac
Δ = -1472-4·9·3
Δ = 21501
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21501}=\sqrt{9*2389}=\sqrt{9}*\sqrt{2389}=3\sqrt{2389}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-147)-3\sqrt{2389}}{2*9}=\frac{147-3\sqrt{2389}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-147)+3\sqrt{2389}}{2*9}=\frac{147+3\sqrt{2389}}{18} $
| 2/3x+8=1/6 | | 6(x-5)=-7(2x+4) | | 5(4a-28)=5(2a-13) | | 2x-2x=-8 | | 12y-7=2y+3 | | 9x-(5x+1)-{2+8x-(7x-5)}+9x=0 | | 100÷x=4 | | 100÷z=4 | | 12-8n=4 | | x/5-22=2x+4 | | 3y+3=96 | | 2x-7=8x+14 | | h-|-8|=15 | | 2x−7=4 | | 4(x-7)=6x | | w(3w-1)=44 | | -12=1/2x+x | | 7^x=0.49 | | x=10=2(x+8) | | (7/2)w-5=-6w+3 | | 9p^2-30p+23=0 | | 13x+15=17x | | 0.6+0.5y-1=y=0.5 | | (x^2+5x+1)^3=0 | | 30=4/2(2x+x) | | x2-6x+10=-3x+50 | | -8(x+5)=-8-5(x+8) | | -8k^+16k+64=0 | | -8k7+16k+64=0 | | C=100+0.75y | | 3-2(b-2)=2-75 | | 17+4+2=1-5h |